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Symmetry and periodicity of potential energy surfaces of  chemical reactions 
and conformational  changes are determined by the symmetry properties of 
the nuclear frameworks of all possible nuclear configurations of the given 
overall stoichiometry. For example, a mirror plane of a nuclear configuration 
implies a mirror plane of the potential surface (or that of the potential energy 
hypersurface in higher dimensions), and a local rotational symmetry of sub- 
stituents implies a translational symmetry, that is, periodicity of the potential 
surface, if the latter is defined in terms of the usual bond length/bond angle 
internal coordinates. Such symmetry relations on potential surfaces are rather 
trivial consequences of  molecular symmetry properties; however, when taken 
collectively for entire domains of nuclear configurations, they lead to nontrivial 
conclusions. Whereas symmetry properties and energy contents of individual 
conformations can be studied locally within limited domains of  the potential 
surface, a global analysis of the potential surface may reveal significantly 
more. In this note, some consequences of  the above approach are explored, 
and a simple test is proposed for the detection and evaluation of the importance 
of multieenter interactions in conformers related to one another by bond 
rotations. 
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Introduction 

Any global interpretation of a potential energy hypersurface model involves an 
entire family of molecules and conformers, characterized by a common overall 
stoichiometry and some constraint on the electronic state [1-7]. Most frequently, 
this latter constraint is formulated within the adiabatic approximation [8, 9], and 
one may formally consider all possible molecules and conformations involving 
a fixed set of N nuclei of specified nuclear charges and k electrons in some 
specified formal electronic state. Such a global representation is rather complex 
for all but the simplest of chemical systems, if for no other reason, simply as a 
consequence of the high dimension, 3N-6, of the potential energy hypersurface 
associated with the N nuclei. That dimension rapidly becomes uncomfortably 
high if N is greater than four or five. 

It is natural to search for simplifying features on such multidimensional hypersur- 
faces, and one of the most obvious tools that may be exploited is the symmetry 
of the potential energy hypersurface. This (3 N-6)-dimensional symmetry is deter- 
mined by the three-dimensional, laboratory-frame symmetry properties of all the 
possible nuclear configurations composed from the N nuclei. The connection 
between symmetries in the two spaces (the three-dimensional euclidean space of 
the laboratory frame, and the (3N-6)-dimensional nuclear configuration space, 
3N6R, above which the potential energy hypersurface is defined) is rather trivial 
and is often exploited in the simplest case of conformational problems involving 
bond rotations. For example, if the (3N-6)-dimensional nuclear configuration 
space 3N'6R is defined in terms of the usual bond length/bond angle internal 
coordinates, then a two-dimensional mirror plane of a laboratory-frame nuclear 
configuration implies a (3 N-7)-dimensional mirror plane of the nuclear configur- 
ation space 3N'6R, and a (3 N-6)-dimensional mirror plane of the potential energy 
hypersurface. Similarly, a local rotational symmetry of substituents in the labora- 
tory frame implies a (3N-6)-dimensional translational symmetry within the 
nuclear configuration space 3N6R, that is, periodicity of the potential energy 
hypersurface. Furthermore, if within the local internal coordinate system of the 
nuclear configuration space 3N'6R the point assigned to the united atom configur- 
ation is unique (a condition not necessarily fulfilled by an arbitrary set of internal 
coordinates), then the three-dimensional symmetry element of a point of inversion 
within the laboratory frame implies a (3N-6)-dimensional symmetry element of 
a point of inversion within the corresponding domain of the nuclear configuration 
space 3N6R. Note that, in contrast to the symmetry elements mentioned above, 
this does no t  imply that a point of inversion should also exist on the potential 
energy hypersurface itself, since the hypersurface is embedded in a (3N-5)- 
dimensional space, where the additional dimension is energy, and a laboratory- 
frame point of inversion does not in general imply an inversion along the (3N-5)th 
(energy) coordinate. A similar restriction applies for rotation-inversion symmetry 
elements S,. 

Note that laboratory-frame mirror planes and points of inversion are formally 
"inherited" in a rather straightforward manner by the nuclear configuration space 
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3N-6R, by assigning a higher-dimensional symmetry element of the same type to 
each. However, local rotational symmetry in the laboratory frame corresponds 
to a fundamentally different type of symmetry of space 3N'6R" to translational 
symmetry. 

Whereas symmetry properties of individual configurations are of great utility in 
the analysis of their physical and chemical properties, the study of the symmetry 
properties of an entire potential energy hypersurface can reveal the symmetry 
relations among various chemical processes, chemical reactions and conformational 
changes. These collective properties represent qualitatively more than information 
on the symmetry properties of a sequence of individual configurations, since 
global properties represent global constraints. Various global approaches to 
chemical problems are finding applications in theoretical chemistry: in reaction 
kinetics [10, 11], in potential surface analysis [12-14], and in the study of more 
general chemical functionals [15]; a detailed bibliography can be found in [7]. 

In this note we shall suggest an application of a global approach to the problem 
of three-center, and in general, multicenter interactions along conformational 
reaction paths. We shall show that the relative importance of such multicenter 
interactions can be tested by analyzing the degree of asymmetry of the potential 
energy hypersurface, within the above global approach. Whereas there is no 
unique definition for a quantitative measure of the degree of asymmetry (the 
degree of deviation from a given symmetry) of individual nuclear configurations, 
one such measure can be given for the potential energy hypersurface, in terms 
of an integral of an energy-like quantity. In the definition of this measure we 
shall exploit the only truly peculiar symmetry relation between the laboratory- 
frame euclidean space and space 3N'6R: the correspondence between laboratory- 
frame rotation and 3N-6R space translation, mentioned above. 

The interrelation between periodicity and reflection symmetry along 
conformational potential surfaces 

We shall use an example in order to introduce some of the intuitive concepts 
required for the proposed test of multicenter interactions. Consider the conforma- 
tional problem of the substituted ethane derivative A3C-CXYZ, where we assume 
that different letters stand for different monatomic substituents. In particular, we 
shall investigate the two-dimensional potential energy surface defined in terms 
of two internal coordinates: the C-C bond rotation coordinate, a, and the C-C 
bond stretching coordinate, r, illustrated in Fig. 1. For the sake of simplicity we 
shall assume that the A3C moiety has a local C3 symmetry element, with an axis 
coincident with the C-C bond axis, which is preserved for all conformational 
motions confined to the plane defined by the internal coordinates ~ and r. That 
is, we shall consider an ideal conformational problem involving rotation and 
stretching along only one, single formal C-C bond: the combinations of rigid 
rotations of the A3C group, and simple stretching of the C-C bond, interconnect- 
ing two rigid molecular fragments. The forthcoming analysis is the simplest if 
we assume that A,X,Y, and Z are all simple, monatomic substituents. 
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Fig. 1. Periodic potential surface of the 
conformational problem of C-C bond rotation 
(a) and C-C bond stretching (r) of substituted 
ethane derivative A3C-CXYZ. Due to 
multicenter interactions the potential surface 
has no mirror lines. Letters m and s stand for 
minima and saddle points, respectively 

Evidently, for any fixed bond length r all conformations with a substituent A 
and substituent X eclipsed are equivalent, hence the potential energy surface is 
periodic in coordinate a by a period of 2~-/3. Consider three conformations for 
a given r value: the eclipsed conformation (r, ao), where 

O~o = 2 m  (1)  

and two additional conformations, (r, a ') ,  and (r, a"), derived from the eclipsed 
conformation (r, ao) by taking 

ol' = ao - Aa, (2) 

and 

a"--- ao+  Ao~, (3) 

respectively, where Aa is a positive angle less than 2~r/3, otherwise arbitrary, 

0 < Ace < 2~-/3. (4) 

In the two conformations (r, a ' )  and (r, od') precisely the same nucleus-nucleus 
distances are present; however, these pair distances are distributed among the 
nuclei in a different way. For example, consider the nucleus A that is eclipsed 
with nucleus X in configuration (r, ao). In configuration (r, a ' )  this nucleus A is 
at distances dAx, day, and dAz from nuclei X, Y, and Z, respectively, as illustrated 
in Fig. 2. In configuration (r, ce") the same nucleus A has the same distance dAx 
from nucleus X. By contrast, precisely the same dAy and dAz distances will not 
in general belong to the same nucleus A in the new configuration (r, cd'). Instead, 
distance dAy will belong to one and dAz will belong to the other of  the remaining 
two nuclei of type A. In the new configuration (r, a") all the old pair distances 
are accounted for. However, in general no nucleus A will have all its pair distances 
the same as in conformation (r, a ') .  In particular, note that the two conformations 
(r, ce') and (r, ce") are not in general the mirror images of each other. 
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Fig. 2. Although the two rotamers depicted in this figure contain precisely the same set of pair interactions, 
these pair interactions are redistributed among different pairs (only the redistribution of the pair 
interactions AX, AY, and AZ of one of the A atoms of the first rotamer is shown by dotted lines). This 
redistribution leads to differences in the multicenter interactions in the two rotamers, which are responsible 
for the lack of reflection symmetry along lines of constant a of the potential surface shown in Fig. 1. 

The above observat ion  implies an impor tan t  general  result. Evidently,  the electron 

d is t r ibut ion  is control led by the locat ion of the nuclei .  Consequent ly ,  if the 
conformat iona l  energy could be represented as a sum of two-center  interact ions,  
then the preservat ion of pair  distances would  lead to the same energy value for 

the two conformat ions  (r, a ' )  and  (r, a"):  

Ee(r, ce') = Ee(r, a"). (5) 

The above case ( indicated by # )  is hencefor th  referred to as the case of  addit ive 
pairwise interact ions (API).  The line characterized by 

0 / = 0 / 0 = 2 ' / 7 "  ~ 

and  all the lines with angles 

a=ao+k21r/3, k = 0 ,  • +2, + 3 , . . . .  

(6) 

(7) 

cor respond to lines of reflection of the API  potential energy surface. Stating this 
in  different terms, in the above API  case the potent ia l  energy surface exhibits 

f~ 

x"', 

A 

Fig. 3. The ideal additive pairwise interaction 
potential surface of the conformational 
problem of Fig. 1. Note that, in addition to 
periodicity, this potential surface also has 
reflection lines at the a = k(2rr/3), k = 
0, +1, +2, ... values 

v 
0 2~/3 4~z/3 2~ 8~/3 
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additional symmetries. An example for the API case, analogous to that of Fig. 
1, is shown in Fig. 3. 
In real conformational problems the above assumption that molecular conforma- 
tional energy can be represented as a sum of two-body interactions does not hold 
in general. Even if precisely the same dax distance is found for a given nucleus 
A in the two conformations (r, t~') and (r, o~"), the fact that the remaining 
interactions of  A are different in the two conformers implies that the actual AX 
interactions will also be different, in spite of the common internuclear distance 
dAx. This may be interpreted as a many-body effect: a change in the AX 
interaction, caused by changes in other interactions involving the same nucleus A. 

This many-body effect implies that for the true conformational energy E(r, a) 
Eq. (5) is not necessarily valid, that is, 

E(r, ct') ~ E(r, a") (8) 

is possible. Consequently, lines characterized by angle coordinates a =  
ao+ k2~r/3, k = 0, +1, +2, + 3 , . . . .  are not necessarily lines of reflection of the 
true potential energy surface E(r, a) and the additional symmetry present for 
the simpler model is missing. 

It is important to note, however, that the two-body interactions are usually 
dominant, and actual potential surfaces of  the above type often show strong 
resemblance to the API case, where reflection symmetry is present in addition 
to periodicity. 

An energy integral as a measure of "missing symmetry" and test 
for multicenter interactions 

It is possible to define a quantitative measure of  the deviation from the API case 
of  reflection symmetry. Consider the following function: 

f(r, a) = E(r, a) -E(r, -a). (9) 

For the function E#(r, a) the angle a = So = 27r and the angle a = 0 correspond 
to lines of  reflection. Consequently, the function f ( r ,  or) is the difference of  surface 
E(r, a) and its reflected image E(r, - a ) ,  the latter obtained by reflecting E(r, a) 
along one of  the lines of  reflection (a  = 0) of  the API surface E#(r, a). If  E is 
replaced by E # in Eq. (9), then f(r, a) is identically zero: 

f(r, ce)=O. (10) 

However, for true conformational surfaces of  the above type the function f ( r ,  a )  
is not in general zero and at some point (r, a )  its actual value 

f(r,a) (11~ 

may serve as a local measure for the "degree of deviation" from reflection 
symmetry. 

Alternatively, one may ask the question, how large is in general the deviation 
from reflection symmetry along the entire potential surface in a global sense. For 
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any property of the surface it is sufficient to carry out a test or analysis over the 
unit cell of a periodic potential. In our conformational problem the unit cell is 
the product  of the two representative intervals for variables r and a:  

[0, oo)| 2~/3] .  (12) 

One may take the following integral of function f(r, a) over the unit cell, 

;o ;7 3 g = If(r, a) I drda, (13) 

as a global measure of deviation from reflection symmetry along the potential 
energy surface. For an API potential energy surface E #, involving no multicenter 
interactions, the above global measure g is zero, 

g = 0 ,  (14) 

as is evident from Eq. (10). For real potential surfaces of variables r and ~, the 
above integral g may also serve as a global measure of the importance of 
multicenter interactions. 

The above function f and integral g can be generalized for periodic potential 
energy hypersurfaces of dimension n (e.g. n = 3N-6), where n is higher than two. 
Let us assume that angle a is an internal coordinate along which the hypersurface 
E(r, a) is periodic, and the (n-1)-dimensional vector r represents collectively 
all the remaining internal coordinates. Then, by analogy with the two-dimensional 
case, Eq. (9), a function f(r, a) can be defined as 

f ( r ,  a ) =  E(r, a ) -  E(r, -a).  (15) 

At point (r, o:) of the n-dimensional nuclear configuration space "R the above 
function f(r, a) is a local measure of the deviation from reflection symmetry 
along planes (in general, hyperplanes) of the space "R. These planes or hyper- 
planes are characterized by a constant a value, at which an API energy hypersur- 
face E#(r, a) of the same type of internal coordinates (r, a)  has mirror planes, 
or in general, (n-1)-dimensional mirror-hyperplanes. Evidently, Eq. (10) also 
holds for higher dimensional API hypersurfaces so for E(r, a) = E#(r, a) 

f(r, a)  = 0. (16) 

Consequently, function f(r, a) is also a local measure of the deviation of the 
actual hypersurface E (r, a)  from the analogous API hypersurface involving only 
additive, pairwise interactions. That is, function f(r, a) is a local test of the 
contribution of multicenter interactions. 

Note that the internal coordinate a along which a potential energy hypersurface 
E(r, a) is periodic is not necessarily unique. Reflections by two hyperplanes 
characterized by the constancy of two different periodic internal coordinates, a 
and a ' ,  correspond to two different physical conditions and to two different sets 
of conformational motions. In addition, they test two different sets of multicenter 
interactions. 

By arguments analogous to those of the two-dimensional case, one may define 
a global measure for the degree of loss of reflection symmetry along the entire 
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po ten t i a l  energy hypersur face .  I f  the  d i s t ingu i shed  angle  var iab le  a is p e r i o d i c  
by  8, and  i f  the  (n - 1 ) -d imens iona l  fo rmal  uni t  cell o f  the  r ema in ing  in te rna l  
coo rd ina t e s  is d e n o t e d  by  " - I U ,  then the ac tua l  n -d ime ns iona l  uni t  cell  " U  o f  
the  hype r su r f ace  m a y  be  r e g a r d e d  as the  p r o d u c t  set 

" U  = , - 1 U |  ~]. (17) 

F o r  the n - d i m e n s i o n a l  case the  g loba l  measu re  g is def ined as 

g = - ,~  If(r ,  o~)l ardor. (18) 

The above  in tegra l  g is zero  for  A P I  po ten t i a l  energy hypersur faces .  However ,  
g is not  in genera l  zero for  ac tua l  po ten t i a l  energy hyper su r faces  involving all  
in te rac t ions  and  it p rov ides  a global test for  the  con t r ibu t ion  o f  mul t i cen te r  

in terac t ions .  

App l i c a t i ons  o f  this test  o f  mul t i cen te r  in te rac t ions ,  wi th in  the f r ameworks  o f  
var ious  a p p r o x i m a t i o n s  to the  m o l e c u l a r  wavefunc t ion ,  will  be r e p o r t e d  in a 
fo r thcoming  pub l ica t ion .  
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